On uniquely partitionable planar graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On uniquely partitionable planar graphs

Let ~1,22 . . . . . ~,; n/>2 be any properties of graphs. A vertex (~L, ~2 . . . . . J~,,)-partition of a graph G is a partition (V1, l~,...,/7,,) of V(G) such that for each i = 1,2 . . . . . n the induced subgraph G[Vi] has the property ~i. A graph G is said to be uniquely (~1,~2 . . . . . ~,)-partitionable if G has unique vertex (2~1, ~2 , . . . , ~,)-partition. In the present paper we invest...

متن کامل

Remarks on the existence of uniquely partitionable planar graphs

We consider the problem of the existence of uniquely partitionable planar graphs. We survey some recent results and we prove the nonexistence of uniquely (D1,D1)-partitionable planar graphs with respect to the property D1 ”to be a forest”.

متن کامل

Uniquely partitionable graphs

Let P1, . . . ,Pn be properties of graphs. A (P1, . . . ,Pn)-partition of a graph G is a partition of the vertex set V (G) into subsets V1, . . . , Vn such that the subgraph G[Vi] induced by Vi has property Pi; i = 1, . . . , n. A graph G is said to be uniquely (P1, . . . ,Pn)-partitionable if G has exactly one (P1, . . . ,Pn)-partition. A property P is called hereditary if every subgraph of ev...

متن کامل

The order of uniquely partitionable graphs

Let P1, . . . ,Pn be properties of graphs. A (P1, . . . ,Pn)-partition of a graph G is a partition {V1, . . . , Vn} of V (G) such that, for each i = 1, . . . , n, the subgraph of G induced by Vi has property Pi. If a graph G has a unique (P1, . . . ,Pn)-partition we say it is uniquely (P1, . . . ,Pn)partitionable. We establish best lower bounds for the order of uniquely (P1, . . . ,Pn)-partitio...

متن کامل

Uniquely partitionable planar graphs with respect to properties having a forbidden tree

Let P1, P2 be graph properties. A vertex (P1,P2)-partition of a graph G is a partition {V1, V2} of V (G) such that for i = 1, 2 the induced subgraph G[Vi] has the property Pi. A property R = P1◦P2 is defined to be the set of all graphs having a vertex (P1,P2)-partition. A graph G ∈ P1◦P2 is said to be uniquely (P1,P2)-partitionable if G has exactly one vertex (P1,P2)-partition. In this note, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(98)00102-2